Department of Electrical and Computer Engineering

Chairperson: Karaki, Sami
Professors: Al-Alaoui, Mohamad Adnan; Artail, Hassan; Bazzi, Louay; Chaaban, Farid; Chedid, Riad; Chehab, Ali; Dawy, Zaher; Diab, Hassan; El-Hajj, Ali; Jabr, Rabih; Kabalan, Karim; Karaki, Sami; Kayssi, Ayman; Mansour, Mohamed; Saade, Jean; Sabah, Nassir
Associate Professors: Abou-Faycal, Ibrahim; Akkary, Haitham; Awad, Mariette; Elhajj, Imad; Hajj, Hazem; Karameh, Fadi; Masri, Wassim
Assistant Professors: Costantine, Joseph; Daher, Naseem; Kanj, Rouwaida; Zaraket, Fadi
Visiting Associate Professor: Saghir, Mazen
Adjunct Professor: Khoury, Shahwan
Senior Lecturers: Chahine, Hazem; Hamandi, Lama; Huijer, Ernst; Nasser, Youssef
Lecturers: Droubi, Ghassan; Hijazi, Basma; Marmar, Ali; Moukallid, Ali
Instructors: Dinnawi, Rafica; Kanafani, Zaher; Kanso, Ali; Salim, Bassel

The Department of Electrical and Computer Engineering offers two undergraduate programs leading to the degree of Bachelor of Engineering and a minor in Biomedical Engineering.

Undergraduate Programs

The Department of Electrical and Computer Engineering offers the degree of Bachelor of Engineering in two majors:

- Computer and Communications Engineering (CCE)
- Electrical and Computer Engineering (ECE)

The mission of the undergraduate programs is to impart a basic understanding of electrical and computer engineering built on a foundation of mathematics, physical sciences, and technology. This will help expose students to practical and major design experiences and provide students with a global perspective and an awareness of their leadership role in regional development. This preparation is augmented by the liberal arts education offered to all undergraduates at the American University of Beirut.

The Electrical and Computer Engineering program provides the students with options to explore and specialize in one or more areas of electrical and computer engineering.

The Computer and Communications Engineering program prepares its graduates for careers and graduate studies in information and communication technologies.

The department also offers one minor in Biomedical Engineering.
Computer and Communications Engineering Program

Program Educational Objectives
The objectives of the CCE program are to graduate students who are able to:
• achieve their employment or post-graduate educational goals
• and advance in their careers through leadership, life-long learning, innovation, critical thinking, integrity, and civic responsibility.

Program Requirements
• Mathematics: MATH 201; MATH 202; MATH 211 or CMPS 211; MATH 218 or 219; STAT 230; and one of MATH 210, 224, 227, 251, or 261
• Sciences: PHYS 210, PHYS 210L, CHEM 201 or 202, CHEM 203 or 205, and one additional science elective
• General Education Requirements: 12 credits in Humanities including INDE 410, 6 credits in Social Sciences, 6 credits in English including ENGL 206 (and excluding ENGL 204 and 208), and 3 credits in Arabic
• INDE 301: Engineering Economy
• ECE Core Courses: FEAA 200, EECE 210, EECE 230, EECE 290, EECE 310, EECE 311, EECE 320, EECE 321, EECE 330, EECE 340, EECE 350, EECE 380, EECE 442
• ECE Laboratories: EECE 310L, EECE 321L, EECE 410L, two additional laboratories: one restricted laboratory and one elective laboratory
• ECE Restricted Electives: Four restricted elective courses from the list of CCE Focus Area courses with no more than three courses from any given area
• Undergraduate Elective Courses: 3 credits of EECE 400 level courses
• Technical Electives: 18 credits of course work, at least 6 credits of which must be in ECE. No more than 6 credits may be taken from the same department, program, and/or track
• Approved Experience: EECE 500
• Final Year Project: EECE 501 and EECE 502

The program requirements can be completed according to the following proposed schedule:

<table>
<thead>
<tr>
<th>Term I (Fall)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEAA 200</td>
<td>Introduction to Engineering and Architecture</td>
</tr>
<tr>
<td>EECE 210</td>
<td>Electric Circuits</td>
</tr>
<tr>
<td>ENGL 201</td>
<td>English Course</td>
</tr>
<tr>
<td>MATH 201</td>
<td>Calculus and Analytic Geometry III</td>
</tr>
<tr>
<td>MATH/CMP 211</td>
<td>Discrete Structures</td>
</tr>
<tr>
<td>Total 15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term II (Spring)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 230</td>
<td>Introduction to Programming</td>
</tr>
<tr>
<td>EECE 290</td>
<td>Analog Signal Processing</td>
</tr>
<tr>
<td>MATH 202</td>
<td>Differential Equations</td>
</tr>
<tr>
<td>MATH 218/219</td>
<td>Linear Algebra</td>
</tr>
<tr>
<td>PHYS 210</td>
<td>Introductory Physics II</td>
</tr>
<tr>
<td>PHYS 210L</td>
<td>Introductory Physics Laboratory II</td>
</tr>
<tr>
<td>Total 16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term III (Summer)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 201/202</td>
<td>Chemistry Course</td>
</tr>
<tr>
<td>CHEM 203/205</td>
<td>Chemistry Laboratory</td>
</tr>
<tr>
<td>Humanities or Social Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total 8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term IV (Fall)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 310</td>
<td>Electronics</td>
</tr>
<tr>
<td>EECE 310L</td>
<td>Electric Circuits Laboratory</td>
</tr>
<tr>
<td>EECE 320</td>
<td>Digital Systems Design</td>
</tr>
<tr>
<td>EECE 330</td>
<td>Data Structures and Algorithms</td>
</tr>
<tr>
<td>EECE 380</td>
<td>Engineering Electromagnetics</td>
</tr>
<tr>
<td>STAT 230</td>
<td>Introduction to Probability and Random Variables</td>
</tr>
<tr>
<td>Total 16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term V (Spring)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 311</td>
<td>Electronic Circuits</td>
</tr>
<tr>
<td>EECE 321</td>
<td>Computer Organization</td>
</tr>
<tr>
<td>EECE 321L</td>
<td>Computer Organization Laboratory</td>
</tr>
<tr>
<td>EECE 340</td>
<td>Signals and Systems</td>
</tr>
<tr>
<td>EECE 350</td>
<td>Computer Networks</td>
</tr>
<tr>
<td>Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total 16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term VI (Summer)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 206</td>
<td>English Course</td>
</tr>
<tr>
<td>ARAB 203</td>
<td>Arabic Course</td>
</tr>
<tr>
<td>Humanities or Social Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total 9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term VII (Fall)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 442</td>
<td>Communication Systems</td>
</tr>
<tr>
<td>EECE 4xx</td>
<td>Restricted Elective</td>
</tr>
<tr>
<td>EECE 4xx</td>
<td>Restricted Elective</td>
</tr>
<tr>
<td>MATH 202</td>
<td>Math Elective</td>
</tr>
<tr>
<td>INDE 301</td>
<td>Engineering Economy</td>
</tr>
<tr>
<td>Total 15</td>
<td></td>
</tr>
</tbody>
</table>
Electrical and Computer Engineering Program

Program Educational Objectives

The objectives of the ECE program are to graduate students who are able to:

- achieve their employment or post graduate educational goals
- and advance in their careers through leadership, life-long learning, innovation, critical thinking, integrity, and civic responsibility.

Program Requirements

- Mathematics: MATH 201; MATH 202; MATH 211 or CMPS 211; MATH 218 or 219; STAT 230; and one of MATH 210, 224, 227, 251, 261
- Sciences: PHYS 210, PHYS 210L, CHEM 201 or 202, CHEM 203 or 205, and one additional science elective
- General Education Requirements: 12 credits in Humanities including INDE 410, 6 credits in Social Sciences, 6 credits in English including ENGL 206, and 3 credits in Arabic
- INDE 301: Engineering Economy
- ECE Core Courses: FEAA 200, EECE 210, EECE 230, EECE 290, EECE 310, EECE 311, EECE 320, EECE 321, EECE 330, EECE 340, EECE 370, and EECE 380

List of CCE Focus Area/Courses

- Area 1: Computer Hardware Systems: EECE 412, 420, 421, 422, 425
- Area 2: Communications and Networking: EECE 442, 451, 455
- Area 3: Software Systems: EECE 430, 431, 432, 433, 434, 437

List of CCE Restricted Labs

EECE 412L, 435L, 442L, 451L

List of Pre-Approved Technical Electives

- Any EECE course with a number equal to, or greater than, 400
- Any ENMG course with a number equal to, or greater than, 600
- ACT 210
- BIOL 201, 202, 210, 223, 224, 225, 243, 244, 247, 260, 268, 290
- BMEN 600, 601, 603, 605, 607, 608
- CHEM 200, 201, 202, 206, 208, 211, 212, 215, 217, 218, 227, 228, 229
- CHEN 490, 675

* stands for billing

Term VIII (Spring)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 4xx Restricted Elective</td>
<td>3</td>
</tr>
<tr>
<td>EECE 4xx Restricted Elective</td>
<td>3</td>
</tr>
<tr>
<td>EECE 4xx Elective</td>
<td>3</td>
</tr>
<tr>
<td>EECE 410L System Integration Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>INDE 410 Engineering Ethics</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Science Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Total 16

Term IX (Summer)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 500 Approved Experience</td>
<td>1 b*</td>
</tr>
</tbody>
</table>

Term X (Fall)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 501 Final Year Project</td>
<td>3</td>
</tr>
<tr>
<td>EECE 4xx Restricted Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>EECE EECE Elective</td>
<td>3</td>
</tr>
<tr>
<td>Two Technical Electives EECE or Other</td>
<td>6</td>
</tr>
<tr>
<td>Humanities or Social Science Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Total 16

Term XI (Spring)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 502 Final Year Project</td>
<td>3</td>
</tr>
<tr>
<td>EECE Elective Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>EECE EECE Elective</td>
<td>3</td>
</tr>
<tr>
<td>Two Technical Electives EECE or Other</td>
<td>6</td>
</tr>
<tr>
<td>Humanities or Social Science Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Total 16

Total Credit Hours: 143
The program requirements can be completed according to the following proposed schedule:

<table>
<thead>
<tr>
<th>Term I (Fall)</th>
<th>Credits</th>
<th>Term II (Spring)</th>
<th>Credits</th>
<th>Term III (Summer)</th>
<th>Credits</th>
<th>Term IV (Fall)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEAA 200</td>
<td>3</td>
<td>Introduction to Engineering and Architecture</td>
<td>3</td>
<td>CHEM 201/202</td>
<td>3</td>
<td>EECE 310</td>
<td>3</td>
</tr>
<tr>
<td>EECE 210</td>
<td>3</td>
<td>Electric Circuits</td>
<td>3</td>
<td>CHEM 203/205</td>
<td>2</td>
<td>EECE 310L</td>
<td>1</td>
</tr>
<tr>
<td>ENGL</td>
<td>3</td>
<td>English Course</td>
<td>3</td>
<td>Humanities or Social Science Elective</td>
<td>3</td>
<td>EECE 320</td>
<td>3</td>
</tr>
<tr>
<td>MATH 201</td>
<td>3</td>
<td>Calculus and Analytic Geometry III</td>
<td>3</td>
<td>MATH 218/219</td>
<td>3</td>
<td>EECE 330</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 210</td>
<td>3</td>
<td>Introductory Physics II</td>
<td>3</td>
<td>MATH/CMPS 211</td>
<td>3</td>
<td>EECE 370</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 210L</td>
<td>1</td>
<td>Introductory Physics Laboratory II</td>
<td>1</td>
<td>MATH</td>
<td>3</td>
<td>STAT 230</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Term V (Spring)</td>
<td>Credits</td>
<td>Term VI (Summer)</td>
<td>Credits</td>
<td>Term VII (Fall)</td>
<td>Credits</td>
<td>Term VIII (Spring)</td>
<td>Credits</td>
</tr>
<tr>
<td>EECE 311</td>
<td>3</td>
<td>English Course</td>
<td>3</td>
<td>EECE 4xx</td>
<td>3</td>
<td>EECE 4xx</td>
<td>3</td>
</tr>
<tr>
<td>EECE 321</td>
<td>3</td>
<td>Computer Organization</td>
<td>3</td>
<td>EECE 4xx</td>
<td>3</td>
<td>EECE 4xx</td>
<td>3</td>
</tr>
<tr>
<td>EECE 321L</td>
<td>1</td>
<td>Computer Organization Laboratory</td>
<td>1</td>
<td>EECE 4xx</td>
<td>3</td>
<td>EECE 4xx</td>
<td>3</td>
</tr>
<tr>
<td>EECE 340</td>
<td>3</td>
<td>Signals and Systems</td>
<td>3</td>
<td>EECE 4xx</td>
<td>3</td>
<td>EECE 4xx</td>
<td>3</td>
</tr>
<tr>
<td>EECE 380</td>
<td>3</td>
<td>Engineering Electromagnetics</td>
<td>3</td>
<td>EECE 4xx</td>
<td>3</td>
<td>EECE 4xx</td>
<td>3</td>
</tr>
<tr>
<td>Science Elective</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Term X (Fall)</td>
<td>Credits</td>
<td>Term XI (Summer)</td>
<td>Credits</td>
<td>Term XII (Spring)</td>
<td>Credits</td>
<td>Term XIII (Fall)</td>
<td>Credits</td>
</tr>
<tr>
<td>EECE 501</td>
<td>3</td>
<td>Approved Experience</td>
<td>1 b*</td>
<td>EECE 501</td>
<td>3</td>
<td>EECE 501</td>
<td>3</td>
</tr>
<tr>
<td>EECE 502</td>
<td>3</td>
<td>Final Year Project</td>
<td>3</td>
<td>EECE 502</td>
<td>3</td>
<td>EECE 502</td>
<td>3</td>
</tr>
</tbody>
</table>

* Stands for billing

- **ECE Laboratories**: EECE 310L, EECE 321L, EECE 410L and two additional laboratories: one restricted laboratory and one elective laboratory
- **ECE Restricted Electives**: Four restricted elective courses from the list of ECE Focus Area courses with no more than three courses from any given area
- **Undergraduate Elective Courses**: 6 credits of EECE 400 level courses
- **Technical Electives**: 18 credits of course work, at least 6 credits of which must be in EECE. No more than 6 credits may be taken from the same department, program, and/or track. All technical electives must be from the list of pre-approved technical electives
- **Approved Experience**: EECE 500
- **Final Year Project**: EECE 501 and EECE 502

The program requirements can be completed according to the following proposed schedule:
List of Science Electives

- BIOL 201, BIOL 202, BIOL 210, CHEM 201, CHEM 207/211, GEOL 201, GEOL 205, GEOL 211, PHYL 246, PHYS 212, PHYS 217, PHYS 223, PHYS 235, PHYS 236

Minor in Biomedical Engineering

The minor in Biomedical Engineering is open to all AUB students. Students who have completed at least 60 credits at the sophomore level and higher, and who have a cumulative average of 70 or more, may apply by completing the minor application form available in the ECE department. The minor will be indicated on the transcript of the student who completes all the requirements described below and obtains an average in the minor courses of 70 or more.

The minor requirements are divided into a set of core courses and a set of elective courses.

For engineering students, the requirements are as follows:

- EECE 401 [1 cr.]
- BIOL 201 [4 cr.]
- BIOL 202 or PHYL 246 [4 cr.]
- One core course [3 cr.] chosen from EECE 601, EECE 603, or MECH 633 depending on the chosen track of Biomedical Equipment, Neuroengineering or Biomechanical, respectively.
- One elective course from list A below [3 cr.]
- One elective course from list A, B, or C below [3 cr.]
- Minimum number of credits: 18

For biology students, the requirements are as follows:

- EECE 401 [1 cr.]
- BIOL 201 [4 cr.]
- BIOL 202 [4 cr.]
- EECE 210 [3 cr.] (or equivalent, such as PHYS 228 and PHYS 228L) and EECE 601 [3 cr.] for the Biomedical Equipment and Neuroengineering track; or CIVE 210 [3 cr.] (or equivalent) and MECH 634 [3 cr.] for the Biomechanics track
- One elective course from list A or B below [3 cr.]
- Minimum number of credits: 18

For other students, the requirements are as follows:

- EECE 401 [1 cr.]
- BIOL 201 [4 cr.]
- BIOL 202 or PHYL 246 [4 cr.]
- EECE 210 [3 cr.] (or equivalent, such as PHYS 228 and PHYS 228L) and EECE 601 [3 cr.] for the Biomedical Equipment and Neuroengineering tracks; or CIVE 210 [3 cr.] (or equivalent) and MECH 634 [3 cr.] for the Biomechanics track
- One elective course from list A, B, or C below [3 cr.]
- Minimum number of credits: 18

List of ECE Focus Area/Courses

- Area 1: Computer Hardware Systems: EECE 412, 420, 421, 422, 425
- Area 3: Control and Intelligence Systems: EECE 460, 461, 463

List of ECE Restricted Labs

EECE 412L, 460L, 462L, 470L, 471L, 473L

List of Pre-Approved Technical Electives

- Any EECE course with a number equal to, or greater than, 400
- Any ENMG course with a number equal to, or greater than, 600
- ACTT 210
- BIOL 201, 202, 210, 223, 224, 225, 243, 244, 247, 260, 268, 290
- BMEN 600, 601, 603, 605, 607, 608
- CHEM 200, 201, 202, 206, 218, 211, 212, 215, 217, 228, 227, 228, 229
- CHEN 490, 675
- CIVE 460, 461, 553, 601, 602, 655, 661, 662, 663, 664, 665
- DCSN 200, 210
- ENME 225, 235
- FINA 210, 220
- GEOL 201, 205, 211, 212, 213, 219, 221
- INDE 302, 303, 412
- MENG 310, 314, 320, 340, 550, 631, 633, 634, 641, 642
- MKTG 210, 225
- MNGT 218, 220, 229, 230
- PHYL 246
- PHYS 212, 217, 223, 225, 226, 235, 236, 249
- Any STAT course with a number equal to, or greater than, 234
Elective Courses

- **List A:** EECE 601, EECE 602, EECE 603 (unless the student takes EECE 694, in which case either EECE 694 or EECE 603 counts toward the minor), EECE 604, EECE 605, MECH 633, MECH 634
- **List B:** MECH 606, MECH 607, MECH 624, MECH 631, MECH 641/EECE 661, EECE 633, EECE 667, EECE 693, MECH 705, EECE 694 (unless the student takes EECE 603, in which case either EECE 694 or EECE 603 counts toward the minor)
- **List C:** BIOL 202, BIOL 223, BIOL 225, BIOL 244, BIOL 263, BIOL 268, PHYL 202, PHYL 246

Track in Control and Robotics

The ECE Track in Control and Robotics provides a coherent academic framework between the ECE and ME departments in the area of control, instrumentation, and robotics. This track supports interested undergraduate ECE and ME students in pursuing additional control system modeling and design as given in either department based on their individual preferences. This track is open to all undergraduate ECE and ME students and will be indicated, upon its completion, on the transcript of participating students.

ECE students interested in taking the Control and Robotics track must satisfy the following course requirements:

- EECE 460 (3 cr.)
- EECE 461 (3 cr.)
- EECE 460L (1 cr.)
- One elective from list A (Control)
- One elective from list B (Robotics)
- One elective from either list A, B or C
- Total number of credits: 16

Elective Course

- **List A - Control:** EECE 660/MECH 653, EECE 662/MECH 655, EECE 663/MECH 656, EECE 665/MECH 654, and EECE 669/MECH 648
- **List B - Robotics:** EECE 560/MECH 530, EECE 661/MECH 641, EECE 697/MECH 646, and EECE 698/MECH 650
- **List C - Others:** EECE 463/MECH 555, EECE 692/MECH 642, and EECE 699/MECH 647

Course Descriptions

FEAA 200 Introduction to Engineering and Architecture 3 cr.
The course is designed to familiarize first year students with the different disciplines in Engineering and Architecture, including: Architecture, Civil, Mechanical, Electrical, Chemical, Industrial, and technologies used in the fields. The course takes a unique interdisciplinary approach to the field, and introduces the related disciplines in the world of engineering and architecture. One key objective is to promote interdisciplinary interaction and innovative thinking. The course is organized into modules covering the different disciplines within the Maroun Semaan Faculty of Engineering and Architecture (SFEA). The last module of the class showcases interdisciplinary projects demonstrating interactions among the different fields. The lectures explain as applicable to each discipline, through examples, notions of problem solving, design thinking, process of invention and innovation, environmental and civic responsibility, and measures of success in aesthetics and performance. The course project is a key component of the course. It has an interdisciplinary nature bringing ideas and solutions from all disciplines in engineering and architecture. Annually.

EECE 210 Electric Circuits 3 cr.
A course on fundamentals of electric circuits; basic elements and laws; techniques of circuit analysis: node voltage, mesh current, Thévenin, Norton, and source transformation; inductors, capacitors, mutual inductance, and transformers; transient response of RC, RL, and RLC circuits; steady state AC circuits; power calculations; circuit simulation using SPICE.

EECE 230 Introduction to Programming 3 cr.
A course on the basic principles of programming and their application to the solution of engineering problems using a high level programming language. This course introduces structured and object-oriented programming, and covers the basic data types, control structures, functions, arrays, pointers, and classes. Weekly laboratory assignments are an integral part of this course.

EECE 231 Introduction to Programming Using C++ and MATLAB 3 cr.
An introductory course on the principles of programming using C++ and MATLAB. Basic data types, control structures, and arrays will be covered in C++. Algorithms, functions, and arrays will be covered in MATLAB. In addition, the course will expose students to the MATLAB environment and toolboxes with applications in Engineering. Weekly laboratory assignments are an integral part of this course. This course is not considered equivalent to EECE 230, and hence, students who have taken this course and wish to transfer to ECE will need to take EECE 230.

EECE 290 Analog Signal Processing 3 cr.
A course on selected topics in circuit analysis; operational amplifiers; frequency responses; Butterworth and active filters; responses to periodic inputs; real, reactive, and complex power; maximum power transfer; responses to step, impulse, and switching operations; convolution; Laplace transform and its use in circuit analysis; Fourier transform; two-port circuits; and circuit simulation using SPICE. **Prerequisite:** EECE 210.

EECE 310 Electronics 3 cr.
A course on semiconductors; PN junctions; diodes and diode circuits; MOS transistor and applications such as amplifier and switch; bipolar junction transistor and applications such
as amplifier and switch; and circuit simulation using SPICE. Prerequisite: EECE 290, and pre- or corequisite: FEAA 200.

EECE 310L Electric Circuits Laboratory 1 cr.
A laboratory course that covers passive electronic components; laboratory instruments; voltage-divider circuits; sources and Thevenin's Theorem; RC lead-lag networks; series resonance; the transformer; op-amp circuits; single-phase rectifier circuits; LEDs; Zener diode regulator; diode clamping and clipping; BJT and MOSFET characteristics. Pre- or corequisite: EECE 310.

EECE 311 Electronic Circuits 3 cr.
A course on BJT amplifiers; MOSFET amplifiers; differential amplifiers; frequency response of amplifiers; feedback; operational amplifiers; oscillators; digital CMOS circuits; SPICE simulations. Prerequisite: EECE 310.

EECE 312 Electronics (for Mechanical Engineering students) 3 cr.
This course introduces the fundamentals of electronics and electronic circuits to non-majors. Its objectives are to provide a concise treatment of the basic concepts of electronic components and to introduce the student to the basic analog and digital electronic circuits. The course covers the fundamentals of semiconductor diodes, transistors, operational amplifiers and their applications, digital circuits and systems, and basic instrumentation. Prerequisites: EECE 210.

EECE 312L Circuits and Electronics Lab 1 cr.
A laboratory course for non-majors that covers passive electronic components, laboratory instruments, voltage-divider circuits, sources and Thevenin's Theorem, diode rectifier circuits, BJT and FET applications, op-amp circuits, filters, digital circuits, and instrumentation. Pre- or corequisite: EECE 312.

EECE 320 Digital Systems Design 3 cr.
This course introduces the basic principles and practices of combinational and sequential design of digital systems: binary codes, Boolean algebra, combinational circuits design, combinational and sequential building blocks, and design of finite state machines. The course introduces the Hardware Description Language, VHDL; students design and implement two projects using VHDL, one for a combinational circuit and another one for a sequential circuit. Prerequisites: EECE 210 and EECE 230.

EECE 321 Computer Organization 3 cr.
This course covers single-core microprocessor computer organization and basic input/output mechanisms. Students learn how to program microprocessors at the assembly level, and how to design the main core components of a von Neumann computer system, including its instruction set architecture, datapath, control unit, cache, and system buses. To consolidate the material, students work on a VHDL design project of a single-cycle MIPS microprocessor core. Prerequisite: EECE 320.

EECE 321L Computer Organization Laboratory 1 cr.
A laboratory course with experiments in computer organization and interfacing techniques; digital hardware design using CAD tools and FPGAs; program-controlled and interrupt-driven I/O; memory organization; simple peripheral devices and controllers; bus interfaces; microcontroller-based designs. Pre- or corequisite: EECE 321.

EECE 330 Data Structures and Algorithms 3 cr.
This course covers fundamental algorithms and data structures that are used in software applications today. Particular emphasis is given to algorithms for sorting, searching, and indexing. Data structures such as linked lists, binary trees, heaps, B-Trees, and graphs will also be covered along with their associated algorithms. The course also covers basic algorithmic analysis techniques and seeks to promote student programming skills. Prerequisite: EECE 230.

EECE 340 Signals and Systems 3 cr.
This course covers basic concepts and methods related to continuous and discrete-time signals and systems. The course includes: signals and systems and their properties, linear time-invariant systems, stability analysis, sampling of continuous-time signals, z-transform, discrete Fourier transform, time and frequency domain representations of discrete-time signals and systems, and introductory concepts in communications. Prerequisite: EECE 290.

EECE 350 Computer Networks 3 cr.
A course that outlines data communications; wide area networks; circuit and packet switching; routing; congestion control; local area networks; communications architecture and protocols; internetworking. Prerequisites: EECE 330 and STAT 230.

EECE 370 Electric Machines and Power Fundamentals 3 cr.
The course covers three-phase circuits, magnetic circuits, transformers: ideal and real, construction, operation, autotransformers, and 3-phase transformers; fundamentals of AC machines: construction and basic concepts; synchronous generators: construction, equivalent circuits, testing and performance characteristics; induction motors construction, principle of operation, tests, power, and torque expressions. Prerequisite: EECE 290.

EECE 380 Engineering Electromagnetics 3 cr.
This course covers the fundamentals of electromagnetics. It deals with the study of static electric fields in vacuum and dielectrics, conductors, capacitance, electrostatic energy and forces; static magnetic fields, Biot-Savart law, Ampere's law, vector magnetic potential, inductance, Maxwell's equations for time varying fields, Faraday's law, plane wave propagation, in lossless media; transmission lines and their lumped-element model, transmission line input impedance. Prerequisites: EECE 210 and MATH 202.

EECE 401 Biomedical Engineering Seminar 1 cr.
Biweekly seminars given by members of the Maroun Semaan Faculty of Engineering and Architecture or by guest speakers. The seminars cover a range of biomedical engineering topics of theoretical and professional interest. Students are required to submit an assignment based on each seminar, which will be graded. The seminar is required of all students taking the Biomedical Engineering Minor. Students cannot receive credit for both EECE 401 and BMEN 600. Prerequisite: EECE 601 or EECE 603 or MECH 633.

EECE 410L System Integration Laboratory 1 cr.
A laboratory course that introduces students to a variety of electronic systems that will help them better realize a functional device. The laboratory covers a wide range of areas ranging from basic electronics, motor control, communication, micro-controllers, human machine interface, signal generation and measurement, and instrumentation. In addition to the mentioned topics,
students are introduced to C language programming for embedded systems and techniques of circuit design and fabrication. Prerequisites: EECE 310L, and pre- or corequisites: EECE 321L and EECE 311.

EECE 412/612 Digital Integrated Circuits 3 cr.
A course on digital electronic circuits; models, current equations, and parasitics of CMOS transistors for digital design; study of CMOS inverter and logic gates, including analysis, design, simulation, layout, and verification; advanced circuit styles; sequential circuits; advanced topics: semiconductor memories, power grid, clocking strategies, datapath building blocks, deep-submicron design issues, interconnect. CAD Tools will be used for homework assignments, labs and projects. Prerequisites: EECE 310 and EECE 320.

EECE 412L VLSI Computer Aided Design Lab 1 cr.
This is VLSI course that introduces students to the basics of integrated circuit (IC) designs using computer aided design (CAD) tools. The lab familiarizes students with the IC design flow using the industry-standard Cadence Design Systems tools. Students are introduced to VHDL, design and simulation projects using CAD tools for physical layout design, schematic capture, place-and-route of standard cells, logic verification, circuit extraction, and simulation. Pre- or corequisite EECE 412 or EECE 612.

EECE 420 Digital Systems Design II 3 cr.
This course focuses on principles and methodologies of digital logic design at the block and subsystem levels. It covers the design of relatively large and complex digital systems including arithmetic blocks, datapath subsystems, datapath controllers, programmable storage and logic devices, and memory buffers. Synchronous and asynchronous logic design principles are covered. Behavioral modeling and synthesis of combinational and sequential logic are discussed. The Verilog language is used. The course includes a design project using FPGAs. Prerequisite: EECE 320.

EECE 421 Computer Architecture 3 cr.
A course on the principles, techniques, and trade-offs used in designing modern processor core architectures. Topics include: benchmarking and performance evaluation; hardware instruction level parallelism techniques (pipelining, superscalar, out-of-order execution, branch prediction; software instruction level parallelism techniques (loop unrolling, software pipelining, predicated execution, EPIC architecture), virtual memory and high performance memory systems. Students will work on a VHDL design project of a 2-wide superscalar microprocessor core. Prerequisite: EECE 321.

EECE 422 Parallel Computer Architecture and Programming 3 cr.
A course on high-performance computer architectures with emphasis on shared memory and distributed parallel architectures and programming models. Topics include: multicore processors, SIMD processors, UMA, NUMA and COMA shared-memory multiprocessors, distributed multiprocessors, snoopy and directory-based cache coherence protocols, memory consistency models, high performance synchronization methods, speculative lock elision, and transactional memory programming model. Students work on designing parallel programs using the OpenMP threading environment and MPI message passing programming standard. Prerequisite: EECE 321.

EECE 425 Embedded Microprocessor System Design 3 cr.
Embedded microprocessor systems are at the center of new and emerging technologies such as cyberphysical systems, sensor data analytics, and the Internet-of-Things. This course introduces students to contemporary embedded systems design. It covers topics including: the embedded system design process; microcontroller architecture and programming; peripheral device controllers (GPIO); timers/counters; interrupts; serial interfaces (RS-232; SPI; I2C; USB); displays (LCD; TFT-LCD; OLED); memory devices and DMA; analog/digital conversion; pulse-width modulation (PWM); sensors and actuators; embedded operating systems (kernel customization; system boot-up; and device drivers); and networked appliances. Students cannot receive credit for both EECE 425 and EECE 625. Prerequisite: EECE 321.

EECE 430 Software Engineering 3 cr.
A course that teaches the formal processes employed for carrying out software projects, including the analysis, design, development, testing, and deploying of practical software systems. The course requires the completion of a group-based real-life software project. Prerequisite: EECE 330.

EECE 431 Design and Analysis of Algorithms 3 cr.
This course covers techniques for the design and analysis of efficient algorithms. Topics include: sorting algorithms; median and order statistics; sorting lower bound; divide-and-conquer algorithms; dynamic programming; balanced search trees; hash tables; augmenting data structures; number-theoretic algorithms; greedy algorithms; graph algorithms; introduction to NP-completeness and intractability. Prerequisite: EECE 330.

EECE 432 Operating Systems 3 cr.
This course covers the principles of operating systems and systems programming. The topics discussed in class are processes, threads, concurrency and synchronization, scheduling, deadlock, memory management, file systems, I/O devices, parallel and distributed systems, and security. The course will be accompanied with hands-on assignments involving contemporary Linux kernels. Prerequisites: EECE 321 and EECE 330. Students cannot receive credit for both EECE 432 and CMPS 272.

EECE 433 Database Systems 3 cr.
This course covers the nature and purposes of database systems and an introduction to database modeling: entity relationship model, relational model with relational algebra, functional calculus and SQL, integrity constraints, file organization and index files, and normalization. Students cannot receive credit for both EECE 433 and CMPS 277. Prerequisite: EECE 330.

EECE 434 Programming Language Design and Implementation 3 cr.
This course will provide an introduction to the design and implementation of various programming paradigms, namely object-oriented (Java, C++ and C#), functional (Haskell), and logic (Prolog). Compiler construction will be covered, in addition to topics such as, virtual machines, intermediate languages, and concurrency. Students cannot receive credit for both EECE 434 and CMPS 258, or for both EECE 434 and CMPS 274. Prerequisite: EECE 330.

EECE 435L Software Tools Laboratory 1 cr.
This course introduces software tools that enable engineers to become more effective and productive at writing quality code. Students are grouped into teams of two (or three) to undertake
a software project. The project will reinforce object oriented programming concepts, and will involve software tools that expose students to source control, documentation, debugging, build automation, testing, profiling, configuration and deployment. Students have the choice of using Java or C++ to conduct their work. Prerequisite: EECE 330.

EECE 437 Software Architecture and Design Fundamentals 3 cr.
This course covers fundamental principles of software design and architecture from construction, analysis, and practice perspectives. The course details the design and construction of software products for better utility. It details software abstractions of process, data, transactions, and interaction. It discusses design methods such as structural, object, aspect, and feature oriented design. It then discusses deployment, interoperability, reuse, patterns, anti-patterns, and refactoring. The concepts will be illustrated in the context of course projects and with open source supporting tools. Some projects will be built from scratch and some will be built based on existing legacy code. Prerequisite: EECE 330.

EECE 442 Communication Systems 3 cr.
This course introduces the students to the transmission and reception of analog signals; performance of analog communication systems in the presence of noise; analog to digital conversion and pulse coded modulation; transmission and reception of digital signals; performance of digital communication systems in the presence of noise and inter-symbol interference. Prerequisites: EECE 340 and STAT 230.

EECE 442L Communications Laboratory 1 cr.
A laboratory course with experiments covering the following topics: AM and FM modulation/ demodulation, sampling and quantization, digital modulation (PSK, FSK, MSK, GMSK), digital demodulation, and inter-symbol interference. Prerequisite: EECE 442.

EECE 451 Mobile Networks and Applications 3 cr.
This course covers mobile networking topics with focus on wireless networking technologies and mobile computing applications. It addresses the following topics: fundamentals of mobile network design, mobile communications technologies and standards, mobile networking protocols, mobile device platforms, and mobile applications. Prerequisite: EECE 350.

EECE 451L Internetworking Laboratory 1 cr.
This laboratory course covers the technologies and protocols of the Internet. The experiments cover IP, ARP, ICMP, UDP, TCP, DNS, routing protocols (RIP, OSPF, BGP), network address translation (NAT), dynamic host configuration (DHCP), SNMP, and IP multicast. Prerequisite: EECE 350.

EECE 455/632 Cryptography and Networks Security 3 cr.
This course provides an overview of encryption and network security. The topics include: classical encryption techniques, block ciphers and the data encryption standard, finite fields, advanced encryption standard, confidentiality using symmetric encryption, public-key cryptography, key management, hash and MAC algorithms, digital signatures, authentication applications, Web security, email security, and IP security. Prerequisite: Senior standing.

EECE 460 Control Systems 3 cr.
This course seeks to impart in students a sound understanding of fundamental principles in control engineering, based on analog technologies. The course includes: mathematical modeling of linear continuous time invariant single input-single output dynamical systems; transfer functions and state space models, performance specifications, analysis and design of closed loop analog control systems. Prerequisite: EECE 340.

EECE 460L Control Systems Laboratory 1 cr.
This course involves students in the practical implementation of the concepts acquired in EECE 460 by analyzing different types of dynamical systems, designing and understanding controllers suitable to specific models, simulating system responses, and experimentally verifying the effectiveness of various control schemes. Pre- or corequisite: EECE 460.

EECE 461 Instrumentation 3 cr.
A design course for complete instrumentation systems, including measurements, sensors, data acquisition, and component integration. Application areas and course projects include industrial control, laboratory measurements, automation systems, and the like. This course is completed with a set of laboratory experiments. Prerequisite: Senior Standing.

EECE 462L Industrial Control Laboratory 1 cr.
A laboratory that addresses topics related to industrial automation and process control. Experiments include Programmable Logic Controllers (PLC), Supervisory Control and Data Acquisition (SCADA), Human Machine Interface (HMI), Industrial Networks, Machine Vision and Motion Control Applications. Prerequisites: EECE 460 or MECH 431.

EECE 463 Artificial Intelligence for Control Systems /MECH 555 3 cr.
This is an introductory course in the evolving field of artificial intelligence (AI). It aims at giving students a solid foundation in AI by covering basic techniques such as A* searching, reasoning, object tracking, path planning and learning as applied to control systems and manufacturing. The project and lab assignments will emphasize design of intelligent control agents capable of basic learning. Prerequisite: EECE 460 or MECH 435.

EECE 470L Electric Machines Laboratory 1 cr.
Transformers: open circuit, short circuit, and load test; unbalanced loading and parallel operation of transformers; speed control and load characteristics of shunt, series and compound DC machines; induction machines: blocked rotor, no-load, and loading tests; operation of single-phase induction motors; operation of a synchronous machine connected to a large external source. Prerequisite: EECE 370.

EECE 471 Fundamentals of Power Systems Analysis 3 cr.
This course covers three-phase systems, generation modeling review, and generation capability curve; transformers, autotransformers, three-winding transformers, and regulating transformers. Calculation of transmission line parameters, evaluation of steady state operation of transmission lines, reactive power compensation, line capability, power flow analysis using Gauss-Seidel and Newton-Raphson methods, economic load dispatch, symmetrical fault analysis. Prerequisite: EECE 370.

EECE 471L Power Systems Laboratory 1 cr.
This lab course covers various aspects of power systems: measurement of the characteristics of a transmission line and an assessment of its voltage drop and losses; synchronization and operation of a generator connected to an infinite bus system; load characteristics of a
synchronous motor and effect of field excitation; effect of voltage levels and load types on power transmission; load flow data preparation and system study; system analysis of symmetrical and unsymmetrical faults; transient stability. **Prerequisite:** EECE 471.

EECE 473
Power Electronics
3 cr.
This lab course includes an overview of power electronics devices used and their desired characteristics; diode circuits and rectifiers, effect of source inductance, three-phase rectifiers; dc-dc switched mode converters, buck, boost, and buck-boost circuits, bridge converter; pulse-width modulated inverters, voltage control, harmonics, three-phase inverters; introduction to gate and base drive circuits, snubber circuits. **Prerequisites:** EECE 310.

EECE 473L
Power Electronics and Drives Laboratory
1 cr.
This lab course includes experiments to study the following: induction motor torque-speed curve and starting characteristic, induction motor speed control through a 4-quadrant drive, single phase capacitor-start induction motor, ac to dc converter, dc to ac converters; buck, boost, and buck-boost regulators, dc to ac inversion, ac to ac converter. **Prerequisite:** EECE 473.

EECE 474
Electric Drives
3 cr.
A course that covers steady-state analysis of poly-phase induction motors, starting, and control; AC drives: solid-state control, dc link in adjustable speed drives, voltage and frequency controls, braking and plugging, affinity laws; dc motors, dc drives: rectifier and chopper drives, braking. Stepper motors: types, operational characteristics, control algorithms, power drive configurations. Special-purpose motors. **Prerequisite:** EECE 370.

EECE 475
Industrial Electrification
3 cr.
A course that outlines medium and low voltage installations; lighting, practical applications of electric machines; motor control centers; emergency power supplies; and auxiliary systems. **Prerequisite:** EECE 370.

EECE 476
Power System Protection and Switchgear
3 cr.
A course that covers current and voltage transformer theories, construction, and applications, electro-mechanical relay, solid state relay, and numeric relay; analogue to digital converter (ADC), digital to analogue converter (DAC), memories, protection systems for electric machines, transformers, bus bars, overhead and underground transmission lines; over-voltage protection system; and a brief introduction to data transmission. **Prerequisite:** EECE 370.

EECE 481
Applications of Electromagnetic Fields
3 cr.
This course covers basic concepts and methods related to time varying electromagnetic wave propagation. The course includes full analysis of Maxwell’s equations, plane wave propagation, reflection and transmission in lossless and lossy media, normal and oblique incidence, waveguides, impedance matching, and introduction to microwave engineering. **Prerequisite:** EECE 380.

EECE 491
Discrete-Time Signal Processing
3 cr.
Digital Signal Processing (DSP) is at the heart of almost all modern technology. This course introduces the fundamentals of DSP systems, including properties of discrete-time linear systems, digital filter design, sampling and reconstruction, A/D and D/A conversion, quantization, discrete-time Fourier analysis, spectral analysis, sample-rate conversion, FFT and fast convolution, filter structures and realizations, and multirate DSP and filter banks.

The course also discusses applications of DSP in areas such as speech/audio processing, autonomous vehicles, and software radio. It includes a project related to implementations of DSP applications on embedded processors. **Prerequisite:** EECE 340.

ECE 499
Undergraduate Research
3 cr.
This course requires participation, under supervision of a faculty member, in a research project. Before registering, the student must create a proposal regarding the nature of the research, the specific goals of the research, and the desired final report outcome; this proposal must be submitted to and approved by the supervising faculty member and the department before registering. **Prerequisites:** Completion of 65 required credits in the major and a cumulative average of 80 or above.

EECE 500
Approved Experience
1 b*.

A course that covers current and voltage transformer theories, construction, and applications, motor control centers; emergency power supplies; and auxiliary systems. **Prerequisite:** EECE 370.

EECE 501
Final Year Project
3 cr.
A supervised project in groups of normally 3 students aimed at providing practical experience in some aspects of computer, communications and electrical engineering. Students are expected to define the project, state its objectives, complete a literature survey, set project specifications and select a design method. They are also expected to do some preliminary modeling and analysis and to acquire the necessary material needed for the completion of the project in the spring term. A professional report and an oral presentation are also required from the students. **Prerequisite:** EECE 410L.

EECE 502
Final Year Project
3 cr.
This is a continuation of EECE 501. Students are asked to deliver a product that has passed through the design, analysis, testing and evaluation stages. The course also requires the production of a professional report that includes a description of the design process, implementation and testing, verification and validation and a critical appraisal of the project. An oral presentation and a poster are also within the project deliverables. **Prerequisite:** EECE 501.

EECE 503
Special Topics in ECE
3 cr.

EECE 560
Mechatronics
3 cr.
A course that discusses mechatronics; data; numbering systems, architecture of the 8-bit Motorola MC68HC11 microcontroller, assembly language programming, A/D and D/A conversion; parallel I/O and programmable timer operation, interfacing sensors and actuators, applications; a team project on design and implementation of a mechatronic system. **Prerequisites:** EECE 312, and MECH 430 or EECE 461.

EECE 601
Biomedical Engineering I
3 cr.
This course includes an introduction to general instrumentation configuration, performance of instrumentation systems; types and characteristics of transducers; sources and characteristics of bioelectric signals; types and characteristics of electrodes; temperature regulation and measurement; cardiovascular system, measurements, and diagnostic equipment; blood instruments; patient care and monitoring; and electrical safety of medical equipment. **Prerequisites:** BIOL 210 or BIOL 202 or PHYL 246; and EECE 210 or PHYS 226; and PHYS 220L; or consent of instructor.
EECE 602 Biomedical Engineering II 3 cr.
This course covers respiratory system and measurements; nervous system and measurements; sensory and behavior measurements; biotelemetry; instrumentation for the clinical laboratory; x-rays and radioisotope instrumentation; magnetic resonance; and special surgical techniques. Prerequisite: EECE 601.

EECE 603 Biomedical Signal and Image Processing 3 cr.
Fundamentals of digital signal processing as implemented in biomedical applications. It provides a concise treatment of the tools utilized to describe deterministic and random signals as the basis of analyzing biological signals: data acquisition; imaging; denoising and filtering; feature extraction; modeling. The course is tightly coupled with a practical component through laboratory projects. Examples include the auditory system, speech generation, electrocardiogram, neuronal circuits, and medical imaging. Students should have reasonable software skills in Matlab. Prerequisites: STAT 230 and EECE 340.

EECE 604 Communications Engineering for Genetics and Bioinformatics 3 cr.
This course presents research topics with focus on how concepts and techniques from the field of communications engineering can be applied to problems from the fields of genetics and bioinformatics. The main topics covered include genomic data compression, mutual information for functional genomics, channel coding for gene expression modeling, genomic signal processing, and biological computation. Prerequisite: Senior standing.

EECE 605 Neuromuscular Engineering 3 cr.

EECE 612/412 Digital Integrated Circuits 3 cr.
A course on digital electronic circuits; models, current equations, and parasitics of CMOS transistors for digital design; study of CMOS inverter and logic gates, including analysis, design, simulation, layout, and verification; advanced circuit styles; sequential circuits; advanced topics: semiconductor memories, power grid, clocking strategies, datapath building blocks, deep-submicron design issues, interconnect. CAD Tools will be used for homework assignments, labs and projects. Prerequisites: EECE 310 and EECE 320.

EECE 616 Advanced Digital Integrated Circuits 3 cr.
This course covers advanced concepts in circuit design for digital VLSI systems in state-of-the-art integrated circuits technologies. Emphasis is on circuit design and optimization techniques targeted for high-speed circuits, low-power circuits, or high-density circuits. The impact of scaling, deep submicron effects, interconnect, signal integrity, power distribution/consumption, and timing on circuit design is investigated. Emerging challenges in low power/low voltage design, process variations, and memory design in the nano-scale era are covered. Prerequisite: EECE 412 or EECE 612.

EECE 617 Reliability and Statistical Design 3 cr.
This course explores major aspects of statistical design methodologies with particular emphasis on electrical and computer engineering problems. It covers various topics in the domain of reliability, yield estimation, variance reduction methods for purposes of extreme statistics and rare fail event estimation, modeling and optimization. Case studies will be provided to analyze the manufacturability challenges of advanced circuits and the implications on low power design. Prerequisite: Senior standing.

EECE 621 Advanced Computer Architecture 3 cr.
This course focuses on modern advancements in parallel computer architecture with emphasis on instruction level parallelism (ILP). Topics include: advanced branch prediction, data speculation, memory dependence prediction, trace caches, dynamic optimization, checkpoint architectures, latency-tolerant processors, simultaneous multithreading, speculative multithreading, and virtual machines. A key component of the course is a research project in which students use architecture performance simulator to investigate novel architecture techniques. Prerequisite: EECE 421.

EECE 622 VLSI for Communications and Signal Processing 3 cr.
This course introduces concepts in the design and implementation of digital signal processing systems using integrated circuits. Emphasis is on the architectural exploration, design and optimization of signal processing systems for communications. Algorithm, architecture, and circuit design techniques are introduced that enable joint optimization across the algorithmic, architectural, and circuit domains. A key component of the course is a project in which students investigate problems in the design and implementation of low-power and high-performance communication systems. Prerequisite: Senior or graduate standing.

EECE 623 Reconfigurable Computing 3 cr.
A course on reconfigurable computing systems and applications. Contemporary FPGA architectures. FPGA design flows and tools. High-level synthesis. System-level issues: Hardware/software partitioning, memory and host interfaces, interrupts, DMA; operating system support; dynamic partial reconfiguration; classical applications (e.g. DSP and communications, image and video processing, networking and data security); emerging applications (e.g. data analytics, machine learning, edge/fog computing, and financial technologies). Students work on a major design project using appropriate FPGA development boards and tools. Prerequisite: EECE 321.

EECE 624 Digital Systems Testing 3 cr.
This course covers an overview of digital systems testing and testable design; test economics, fault modeling, logic and fault simulation, testability measures, test generation for combinational circuits, memory test, delay test, IDIQ test, scan design, and boundary scan. Prerequisite: EECE 320.

EECE 625 Embedded Systems Design 3 cr.
A course on contemporary embedded systems design. The system design process; microcontroller architectures and programming; peripheral device controllers (GPIO; timers/counters; interrupts); serial interfaces (RS-232; SPI; I2C; USB); displays (LCD; TFT-LCD; OLED); memory devices and DMA; analog/digital conversion; pulse-width modulation (PWM); sensors and actuators; embedded operating systems (kernel customization; system boot-up; and device drivers); and networked appliances. Students work on an embedded design research project using appropriate microcontroller boards and development tools. Students cannot receive credit for both EECE 425 and EECE 625. Prerequisite: EECE 321.
<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 630</td>
<td>Distributed and Object Database Systems</td>
<td>3 cr.</td>
<td>A course that covers design techniques used for building distributing databases, and offers topics on fragmentation, replication, and allocation. The course also discusses strategies for executing distributed queries subject to performance-related criteria. Other covered topics include parallel database implementations and design of object database systems. The course includes a hands-on project for enabling students to get hands-on experience in designing distributed database systems. Prerequisite: Senior standing.</td>
</tr>
<tr>
<td>EECE 631</td>
<td>Advanced Topics in Algorithms</td>
<td>3 cr.</td>
<td>This is a second course on the general principles of algorithm design and analysis. The course is a continuation of EECE 431. Topics include: computability theory; complexity theory: time complexity, P versus NP, circuit complexity, and space complexity; randomized algorithms; linear programming; approximation algorithms; and selected topics. Prerequisite: EECE 431.</td>
</tr>
<tr>
<td>EECE 632/455</td>
<td>Cryptography and Networks Security</td>
<td>3 cr.</td>
<td>This course provides an overview of encryption and network security. The topics include: classical encryption techniques, block ciphers and the data encryption standard, finite fields, advanced encryption standard, confidentiality using symmetric encryption, public-key cryptography, key management, hash and MAC algorithms, digital signatures, authentication applications, Web security, email security, and IP security. Prerequisite: Senior standing.</td>
</tr>
<tr>
<td>EECE 633</td>
<td>Data Mining</td>
<td>3 cr.</td>
<td>This course is an introduction to data mining. Data mining refers to knowledge discovery from huge amounts of data to find non-trivial conclusions. Topics will range from statistics to machine learning to database, with a focus on analysis of large data sets. The course will target at least one new data mining problem involving real data, for which the students will have to find a solution. Prerequisite: Senior standing.</td>
</tr>
<tr>
<td>EECE 634</td>
<td>Introduction to Computational Arabic</td>
<td>3 cr.</td>
<td>The course discusses computational challenges specific to the Arabic language including representation, rendering, processing, structure, interface, and recognition. The course also discusses multilingual texts with Arabic, visits text processing techniques such as encoding, matching, tokenization, search, indexing, and pattern matching. The course reviews the state of the art in automating Arabic language understanding. Prerequisite: EECE 330.</td>
</tr>
<tr>
<td>EECE 635</td>
<td>Logic Verification and Synthesis</td>
<td>3 cr.</td>
<td>The course discusses the correctness of logic systems whether software or hardware, the basic representations of propositional logic, and first order logic. The course discusses how expressive and how realizable different logic theories are. The course covers tools that reason about the correctness of logic, and that automatically synthesizes logic into an implementation. Prerequisite: EECE 330.</td>
</tr>
<tr>
<td>EECE 636</td>
<td>Advanced Programming Practice</td>
<td>3 cr.</td>
<td>This is an advanced course on programming practices with a focus on verification. Teams will work in Agile and extreme programming environments, they will use formal specifications, design patterns, and aspect oriented programming. Projects will involve tools for source control, debugging, code building, documentation, dynamic and static verification. Prerequisite: EECE 330.</td>
</tr>
<tr>
<td>EECE 638</td>
<td>Software Testing</td>
<td>3 cr.</td>
<td>The course focuses on concepts, techniques and tools for testing software. It provides practical knowledge of a variety of ways to test software and an understanding of some of the tradeoffs between testing techniques. The topics include software testing at the unit, module, and system levels; functional and structural testing; regression testing; mutation testing; test suite minimization and prioritization; automatic test case generation. Prerequisite: Senior standing.</td>
</tr>
<tr>
<td>EECE 639</td>
<td>Advanced Techniques and Applications in Data Mining</td>
<td>3 cr.</td>
<td>A course that covers advanced topics in data mining and recent progress in this field. Discussions will include which techniques fit best for complex applications in data mining. Mining complex data will include general text mining, Arabic text mining, social network analysis, spatial data mining, mining of the World Wide Web, stream data, time-series data, and sequence data. We will also discuss recent application sectors and trends in data mining such as for the telecommunication, biological, and financial sectors. Prerequisites: EECE 330; and one of EECE 633, EECE 667, or EECE 693.</td>
</tr>
<tr>
<td>EECE 640</td>
<td>Wireless Communications</td>
<td>3 cr.</td>
<td>A course that covers the fundamentals of wireless communications with emphasis on wireless channel modeling; digital modulation in wireless channels; diversity techniques; channel coding and interleaving in fading channels; adaptive equalization; multiple access techniques; the cellular concept; overview of current wireless communications systems. Prerequisite: EECE 442.</td>
</tr>
<tr>
<td>EECE 640L</td>
<td>Wireless Communications Laboratory</td>
<td>1 cr.</td>
<td>A laboratory course that covers the following topics: basics of radio network planning and optimization, radio network planning for the GSM cellular system, radio network planning for the UMTS cellular system, GSM-UMTS co-existence and co-citing, radio network planning for the WIMAX broadband system, indoor GSM drive testing measurements and analysis, outdoor GSM drive testing measurements and analysis, UMTS drive testing measurements and analysis, and measurement-based wireless channel modeling. Prerequisite: EECE 640.</td>
</tr>
<tr>
<td>EECE 641</td>
<td>Information Theory</td>
<td>3 cr.</td>
<td>In this course students study “data transmission” through introducing the field of information theory. The theory is introduced in a gradual fashion and students study its applications to communications theory, computer science, statistics and probability theory. Covering all the essential topics in information theory, students are introduced to the basic quantities of entropy, relative entropy, and mutual information to show how they arise as natural answers to questions of data compression, channel capacity, rate distortion and large deviation theory. Prerequisite: STAT 230 or EECE 442.</td>
</tr>
<tr>
<td>EECE 642</td>
<td>Introduction to Coding Theory</td>
<td>3 cr.</td>
<td>This course introduces the theory of error-correcting codes with a focus on the asymptotic, algorithmic, and algebraic aspects. Topics include background material from combinatorics and algebra; Shannon's coding theorem; linear codes; coding bounds; classical algebraic codes: Hamming and Hadamard codes, Reed-Solomon codes and Justesen codes, and decoding algorithms; codes from graphs: low density parity check codes, expander codes, explicit constructions, and decoding algorithms; and an introduction to Turbo codes. Prerequisite: Senior standing.</td>
</tr>
</tbody>
</table>
EECE 643 RF System Engineering for Wireless Communications 3 cr.
This course introduces students to system blocks, system parameters, and architectures of RF systems for wireless communications. It focuses on the design of a radio system for transmission and reception of voice and data information: receivers and transmitters system topologies, key system blocks in a wireless system, determination of system block parameters from radio requirements and system analysis, tradeoffs modulation and demodulation schemes and access techniques link budget analysis of RF radio links. Prerequisites: EECE 311, EECE 380, and EECE 442.

EECE 644 Stochastic Processes, Detection, and Estimation 3 cr.
This is a graduate-level introduction to the fundamentals of detection and estimation theory involving signal and system models in which there is some inherent randomness. The concepts that we develop are extraordinarily rich, interesting, and powerful, and form the basis for an enormous range of algorithms used in diverse applications. The material in this course constitutes a common foundation for work in the statistical signal processing, communication, and control areas. Prerequisites: STAT 230 and EECE 340.

EECE 645 Wireless Cellular Technologies 3 cr.
A course on the evolution of cellular technologies with focus on 2G GSM technology, 3G UMTS/HSPA technology, 4G LTE technology, and beyond. Topics include cellular network fundamentals; standardization; transmitter and receiver link level designs; access and core network architectures; physical channels and signaling procedures; scheduling and radio resource management; radio network planning; multiple antenna techniques; emerging topics. Prerequisite: EECE 640.

EECE 646 Advanced Digital and Data Communications 3 cr.
A course that addresses digital communication principles and techniques aimed at achieving improved rates and reliability. It examines information measures such as entropy and mutual information for discrete and wave channel, source coding, channel capacity and coding theorem, linear block and cyclic codes, and hard and soft decision decoding, spread spectrum modulation. Prerequisite: Senior standing.

EECE 647 Queuing Theory 3 cr.
A course that covers Poisson counting and renewal processes; Markov chains and decision theory, branching processes, birth death processes, and semi-Markov processes; simple Markovian queues, networks of queues, general single and multi-server queue, bounds and approximations. Prerequisite: Senior standing.

EECE 650 Client-Server Computing 3 cr.
A course that covers internet and intranet technologies, the client-server model of interaction, design and implementation of clients and servers, interactive and concurrent servers, distributed computing, application gateways, and includes a design project. Prerequisite: EECE 350.

EECE 651 Internet Engineering 3 cr.
A course that provides an in-depth coverage of the Internet architecture, internet protocols, and routing; discusses recent developments on the Internet such as IPv6, switching, and mobility; and gives a detailed study of TCP. Prerequisite: EECE 350.

EECE 651L Internetworking Laboratory 1 cr.
This laboratory course covers the technologies and protocols of the Internet. The experiments cover IP, ARP, ICMP, UDP, TCP, DNS, routing protocols (RIP, OSPF, BGP), network address translation (NAT), dynamic host configuration (DHCP), SNMP, and IP multicast. Prerequisite: EECE 350.

EECE 652 Web Server Design and Programming 3 cr.
This course concentrates on major technologies used in building Web servers. Alternate versions are to be given each year: the Windows-based IIS Server and the Linux-based Apache server. For IIS, ASP.NET along with C# are used for programming Web servers. For Apache, PHP is the language of choice. The course starts with a fast track on client programming, the HTTP protocol, SQL database servers, and XML programming. A weekly lab, two application projects, and a research project constitute the major requirements of the course. Prerequisite: Senior standing.

EECE 653 Multimedia and Networking 3 cr.
This course covers topics in multimedia such as system requirements, performance requirements, representation and compression. Multimedia networking is emphasized by discussing multicasting, streaming, multimedia networking protocols and quality of service-based traffic management protocols. Other topics covered include synchronization, VoIP, and Internet 2. Multimedia networking applications are designed and implemented as student projects. Prerequisite: EECE 350.

EECE 655 Internet Security 3 cr.
The course covers topics in internet security. The course discusses security threats, vulnerabilities of protocols and the different types of attacks. Preventive and defensive mechanisms are covered; such as: e-mail security, web security, IP security, network management security, wireless security, intrusion detection techniques, firewalls, VPNs and tracing the source of attacks. Student projects will be composed of implementation, simulation and research components. Prerequisite: EECE 350.

EECE 655L Network and Computer Security Laboratory 1 cr.
A laboratory course that addresses advanced network and computer security topics. Experiments include the execution of attacks, the setup of intrusion detection and prevention, securing computers and wired and wireless networks, and digital forensics. Prerequisite: EECE 350.

EECE 656 Mobile Ad Hoc and Sensor Networks 3 cr.
This course covers major aspects of ad hoc and sensor networking, and tackles topics related to mobility, disconnections, and battery power consumption. The course provides a detailed treatment of routing protocols in mobile wireless networks, and discusses the IEEE 802.11 Wireless LAN and Bluetooth standards. The course also includes a detailed coverage of wireless sensor networks, and a project that is meant give students hands-on experience in designing a mobile ad hoc network. Prerequisite: EECE 350.

EECE 657 Wireless Security 3 cr.
A course that covers wireless network security; security challenges in wireless networks; security problems facing existing and upcoming wireless networks; security in naming, addressing, neighbor discovery, and routing; and trust and privacy. Prerequisites: EECE 350, and EECE 455 or EECE 632.
EECE 660 System Analysis and Design 3 cr.
/MECH 653
A course that outlines state-space models of discrete and continuous, linear and nonlinear systems; controllability; observability; minimality; Eigenvector and transforms analysis of linear time invariant multi-input multi-output systems; pole shifting; computer control; design of controllers and observers. Prerequisite: EECE 460 or MECH 435

EECE 661 Robotics 3 cr.
/MECH 641
A course that examines robotic manipulators classification and work envelope; robot kinematics, dynamics and forces; joints trajectory planning for end effector desired tracking and constrained motion; control of robots using linear, nonlinear, and adaptive controllers. Prerequisite: EECE 460 or MECH 435.

EECE 662 Optimal Control 3 cr.
/MECH 655
A course on optimization theory and performance measures, calculus of variations, the maximum principle, dynamic programming, numerical techniques, LQR control systems. Prerequisite: Senior standing.

EECE 663 System Identification 3 cr.
/MECH 656
This course introduces the basic mathematical tools to fit models into empirical input-output data. General time-series modeling and forecasting, such as stock prices, biological data and others. Topics include nonparametric identification methods: time and frequency response analysis; parametric identification: prediction error, least squares, linear unbiased estimation and maximum likelihood; convergence, consistency and asymptotic distribution of estimates; properties and practical modeling issues: bias distribution, experiment design and model validation. Prerequisite: Senior standing.

EECE 664 Fuzzy Sets, Logic and Applications 3 cr.
A course that outlines fuzzy sets and related concepts; logical connectives; mapping of fuzzy sets; extension principle; fuzzy relations and fuzzy set ordering; fuzzy logic inference; applications: fuzzy control, signal processing, pattern recognition, decision-making, and expert systems. Prerequisite: Senior standing.

EECE 665 Adaptive Control 3 cr.
/MECH 654
A course that includes the control of partially known systems; analysis and design of adaptive control systems; self-tuning regulators; model reference adaptive control of uncertain dynamic systems; typical applications. Prerequisite: EECE 460 or MECH 435.

EECE 667 Pattern Recognition 3 cr.
The course provides an overview of the algorithms used in machine learning. The course discusses modern concepts for model selection and parameter estimation, decision-making and statistical learning. Special emphasis will be given to regression and classification for supervised mode of learning. Students will be assigned typical machine learning problems to investigate as projects. Prerequisite: Senior standing.

EECE 668 Game Theory and Decision Making 3 cr.
This course provides a set of tools, approaches, and perspectives on game theory to mimic the human elements of decision making that is best described by strategy and cooperation. Topics covered include: games of skills, game of chance, cooperative, mixed motive, zero sum, coalition and repeated games. Students will be assigned real-world examples of game theory to investigate as projects. Prerequisite: Senior standing.

EECE 669 Nonlinear Systems: Analysis, Stability and Control 3 cr.
/MECH 648
A course that presents a comprehensive exposition of the theory of nonlinear dynamical systems and its control with particular emphasis on techniques applicable to mechanical systems. The course will be punctuated by a rich set of mechanical system examples, ranging from violin string vibration to jet engines, from heat beats to vehicle control, and from population growth to nonlinear flight control. Prerequisite: MECH 435 or EECE 460.

EECE 670 Power System Planning 3 cr.
The course investigates electric energy and peak demand forecasts using weather sensitive, time curve, autoregressive and causal models; generation reliability evaluation, loss of energy expectation, energy limited units, probabilistic production costing, generating capacity expansion analysis, and maintenance scheduling; operational planning, unit commitment, hydrothermal coordination; power system security classification, contingency analysis, external equivalents, optimal power flow; planning in a competitive electric power environment. Prerequisite: EECE 471.

EECE 671 Environmental Aspects of Energy Systems 3 cr.
A course that examines world energy resources and classifications; sources and effects of air pollution; air quality modeling. Gaussian dispersion models for pollution estimation; motor vehicle emissions and noise pollution; environmental impacts of electricity generation, pollution control systems, electromagnetic radiation, production and impacts in high-voltage applications; environmental impact assessment; basic concepts. Prerequisite: Senior standing.

EECE 672 Energy Planning and Policy 3 cr.
This is a course that focuses on features of modern energy planning and policy. Topics covered include the interaction among the technological, economic, environmental, and sociopolitical aspects of energy supply and use; electricity, oil, and gas industries, and their market structures; elements of energy planning on the sector and national levels; energy decision-making under conditions of uncertainty, risk management in energy planning; liberalization of energy markets; case studies. Prerequisite: Senior standing.

EECE 673 Power Electronics Systems and Applications 3 cr.
A course that reviews converter topologies for AC/DC, DC/AC, and DC/DC; power supply applications; converter applications to motor drives; utility interface of distributed energy systems; static VAR systems; flexible AC transmission; high voltage DC; power quality control; active and passive harmonics compensation. Prerequisite: EECE 473 or EECE 471.

EECE 675 Renewable Energy Systems 3 cr.
A course that covers the principles of renewable energy, solar radiation, solar water heating, building and other thermal applications, photovoltaic generation, wind power, fuel cells and the hydrogen cycle, biomass, and institutional and economic factors. Prerequisite: Senior standing.
EECE 677 Electric Power System Stability and Control 3 cr.
A course on synchronous machine modeling and simulation, response to small disturbances, and voltage instability. Topics include Park’s transformation, flux linkage, voltage, and state-space equations, subtransient and transient parameters, simplified models of the synchronous machine, treatment of saturation, system reference frame, small-signal stability, power system stabilizers, and bifurcation analysis. Prerequisite: EECE 678.

EECE 678 Advanced Power System Stability 3 cr.
A course on optimal dispatch of generation, symmetrical components and unbalanced faults, transient stability, control of generation, state estimation in power systems and power system simulation. Prerequisite: EECE 471.

EECE 679 Energy Efficiency in the Power Sector 3 cr.
Topics covered in the course include utility companies and energy supply, energy sustainability, cogeneration systems: combined heat and power (CHP) and combined cycle gas turbines (CCGT), reciprocating engines, distributed generation, demand side management, energy analysis techniques, energy audit: types and data analysis, smart grids, energy-efficient rotating machines, design and performance optimization; and case studies. Prerequisite: EECE 370.

EECE 680 Antennas for Wireless Communications 3 cr.
This course provides the students with an understanding of the basic principles of Antenna Analysis and Design for wireless communications. The course covers an overview of the fundamental characteristics and parameters of antennas, an overview of analytical methods used to analyze and design antennas with application to some basic antenna structures such as linear antennas, loop antennas, antenna arrays and microstrip antennas. Prerequisite: EECE 380.

EECE 681 Advanced Antenna Design 3 cr.
This course provides the students with an understanding of advanced antenna structures and presents an overview of analytical and numerical methods used to analyze and design these antenna structures. The course includes broadband antennas, frequency-independent antennas, aperture antennas, horn antennas, microstrip antennas, and reflector antennas. Students will work on a research paper on a selected antenna design topic. Prerequisite: EECE 680.

EECE 682 Time-Harmonic Electromagnetic Fields 3 cr.
A course on time-varying and time-harmonic EM fields; electrical properties of matter; wave propagation and polarization; construction of solutions; reflection and transmission; electromagnetic theorems and principles in particular equivalence; rectangular waveguides and cavities; dielectric waveguide, circular waveguides, spherical waveguide; radiation from structures; scattering by wedges, cylinders and spheres; radiation from apertures, and perturbational and variational techniques. Prerequisite: EECE 380.

EECE 683 Numerical Methods in Electromagnetics 3 cr.
This course examines the principles and applications of numerical techniques for solving practical electromagnetics problems. It covers the moment methods, finite difference methods, finite element methods, and hybrid methods. The course also investigates the application of the finite-volume control method in electromagnetics. Prerequisite: EECE 682.

EECE 684 Microwave Engineering 3 cr.
This course focuses on the analysis and design of passive microwave circuits. It covers the fundamentals for radio frequency, and microwave engineering. It discusses the theories of transmission lines, waveguides, impedance matching, microwave networks, scattering parameters, power dividers, directional couplers, microwave resonators, and microwave filters. The course enables the students to study and analyze their own microwave network using computer-aided design tools and measurement equipment. Prerequisite: EECE 380.

EECE 685 Radio Frequency (RF) Circuits Design 3 cr.
The course focuses on the analysis and design of Radio Frequency circuits and components. The course covers RF design techniques using transmission lines, strip lines, microstrip and coplanar lines. It covers the design of passive and active RF devices, including impedance transformers, amplifiers, oscillators and mixers. It provides understanding of S-parameters and signal-flow graph analysis techniques. The course enables the student to get hands-on experience in RF circuit design through the use of computer-aided design tools to simulate and analyze radio frequency circuits, build them as part of a course project, and perform measurements in the lab using network and spectrum analyzers. Prerequisites: EECE 311, EECE 340, and EECE 380.

EECE 691 Digital Signal Processing 3 cr.
Course topics include a review of signals, systems, sampling, and transforms; Euler, Tustin (bilinear), and Al-Alaoui s-to-z transforms; design of digital filters: FIR and IIR; multi-rate signal processing with applications; effects of finite word length; discrete random signals and stochastic spectral estimation; introduction to fractional order systems; introduction to adaptive filtering; introduction to multi-dimensional signal and image processing; current topics of interest. Prerequisite: Senior standing.

EECE 691L Digital Signal Processing Lab 1 cr.
This graduate lab is comprised of a set of lab experiments in MATLAB, C and Assembly covering a series of real-time signal processing topics. The developed laboratory material is introduced to complement the digital signal processing course (EECE 691). Upon completion of the lab, the student will have acquired the required knowledge and skills to develop real-time DSP systems. Prerequisites: EECE 691 (may be waived upon consent of instructor) and senior standing.

EECE 692 Computer Vision 3 cr.
An introductory course on the problems and solutions of modern computer vision. Topics covered include image acquisition, sampling and quantization; image segmentation; geometric framework for vision: single view and two-views; camera calibration; stereopsis; motion and optical flow; recognition; pose estimation in perspective images. Prerequisite: Senior standing.

EECE 693 Neural Networks 3 cr.
The course provides a comprehensive foundation to artificial neural networks and machine learning with applications to pattern recognition and data mining; learning processes: supervised and unsupervised, deterministic and statistical; clustering; single layer and multilayer perceptrons; least-mean-square, back propagation, deep learning; Al-Alaoui pattern recognition algorithms; radial basis function networks; committee machines; principal component analysis; self-organizing maps; current topics of interest. Prerequisite: Senior standing.
EECE 694 Digital Image Processing 3 cr.
Introduction to multi-dimensional signal processing; digital image fundamentals; image formation and perception; image representation, coding, and filtering; image enhancement in the spatial and frequency domains; image restoration; color image processing; wavelet and multi-resolution processing; image compression; morphological image processing; image segmentation; feature extraction and scene analysis; representation and description; object recognition; introduction to computer graphics and computer vision; current topics of interest. Prerequisite: Senior standing.

EECE 694L Image Processing Lab 1 cr.
The EECE 694L graduate lab comprises a set of MATLAB/C++ based lab experiments in different image processing topics covering image pre and post processing techniques, image compression, morphological transformations, image restoration and enhancement techniques, color image processing, computer vision basics, and geographical image processing. In addition, students will be exposed to software optimizations for real time image processing using SIMD instructions. Prerequisite: EECE 694 or EECE 603.

EECE 695 Adaptive Filtering 3 cr.
A course that examines the fundamentals of optimal filtering and estimation, Wiener filters, linear prediction, steepest-descent and stochastic gradient algorithms; frequency-domain adaptive filters; method of least squares, recursive least squares, fast fixed order and order-recursive (lattice) filters; misadjustment, convergence and tracking analyses, stability issues, finite precision effects; connections with Kalman filtering; and nonlinear adaptive filters. Prerequisite: Senior standing.

EECE 696 Applied Parallel Programming 3 cr.
This course is an introduction to parallel programming, and GPU computing. Topics include: GPU as a part of the PC architecture; CUDA, CUDA threads, and CUDA memory; floating point performance; Open Cl; MPI; and reductions and their implementation. The course also includes application case studies, current topics, and a course project. Prerequisites: EECE 321, and senior or graduate standing.

EECE 697/ Wheeled Mobile Robotics 3 cr.
MECH 646
A course that provides an in-depth coverage of wheeled mobile robots. The material covers: nonholonomy and integrability of kinematic constraints. Modeling: kinematics, dynamics and state-space representation. Nonlinear control strategies (open-loop and closed –loop). Five case studies are covered all-over the course: car-like, cart-like, omni-directional wheeled, mobile wheeled pendulums and bike-like robots. Prerequisite: Senior standing.

EECE 698/ Autonomous Mobile Robotics 3 cr.
MECH 650
This course is designed to provide engineering graduate and 4th year students with the opportunity to learn about autonomous mobile robotics. Topics include sensor modeling, vehicle state estimation, map-based localization, linear and nonlinear control, and simultaneous localization and mapping. Prerequisites: EECE 230, EECE 312, and MECH 435; or EECE 230 and EECE 460.

EECE 699/ Hydraulic Servo Systems 3 cr.
MECH 647
A graduate lecture course, which teaches the fundamentals of modeling and control of hydraulic servo-systems. It provides theoretical background and practical techniques for the modeling, identification and control of hydraulic servo-systems. Classical and advanced control algorithms are discussed. The use of Matlab/Simulink and DYMOLA will be an integral part in this course. Prerequisites: MECH 314 and MECH 435 or MECH 314 and EECE 460.